
Institut für Computergraphik und
Algorithmen

Technische Universität Wien
Karlsplatz 13/186/2

A-1040 Wien
AUSTRIA

Tel: +43 (1) 58801-18601
Fax: +43 (1) 58801-18698

Institute of Computer Graphics and
Algorithms

Vienna University of Technology
email:

technical-report@cg.tuwien.ac.at

other services:
http://www.cg.tuwien.ac.at/
ftp://ftp.cg.tuwien.ac.at/

TECHNICAL REPORT

An Error Metric for Layered Environment Map Impostors.

Stefan Jeschke Michael Wimmer

TR-186-2-02-04
February 2002

Keywords: impostors, real-time rendering, virtual environments

An Error Metric for Layered Environment Map Impostors.

Stefan Jeschke∗ Michael Wimmer †

Vienna University of Technology

Abstract

Impostors are image-based primitives commonly used
to replace complex geometry in order to accelerate the
rendering of large virtual environments. This paper de-
scribes a “layered impostor technique” used for repre-
senting distant scene-parts when seen from a bounded
viewing region. A special layer placement is derived
which bounds the geometric error introduced by paral-
laxes to a defined value. In combination with a special
technique for image generation, a high-quality impostor
representation without image artifacts can be obtained.

CR Categories: I.3.3 [Computer Graphics]:
Picture/Image Generation—Viewing Algorithms I.3.7
[Computer Graphics]: Three-Dimensional Graphics and
Realism—Virtual Reality

Keywords: impostors, real-time rendering, virtual en-
vironments

1 Introduction

Impostors are image-based primitives that are primarily
used in real-time rendering systems for the faster dis-
play of complex scene parts. Impostors are especially
useful where other rendering-acceleration methods do
not provide satisfying results. For instance, visibility
calculations do not work well in scenes with low oc-
clusion (like flyovers etc.), and geometric simplifica-
tion approaches often provide insufficient results when
simplifying many disconnected objects like street ob-
jects, trees etc.. The advantage of image-based rep-
resentations is their low geometric complexity while
at the same time providing almost the same appear-
ance as conventional geometry rendering. Impostors
are valid (i.e., indistinguishable from the geometric ob-
jects) only from a bounded viewing region (a so-called
view cell). To generate an impostor, an image is ren-
dered from a so-called reference viewpoint and com-
bined with geometric information. The amount of geo-

∗jeschke@cg.tuwien.ac.at
†wimmer@cg.tuwien.ac.at

metric information can be different for individual im-
postor techniques, including simple quadrilaterals (so-
called planar impostors [Regan and Pose 1994]), polyg-
onal meshes (so-called Textured Depth Meshes [Darsa
et al. 1997; Sillion et al. 1997]), or per-pixel geometry
(called a Depth Image [Max and Ohsaki 1995; Aliaga
and Lastra 1999]). Problems of impostor techniques are
high memory requirements, incompatibility with con-
ventional rendering hardware, and artifacts due to miss-
ing information about scene parts hidden from the ref-
erence viewpoint [Decoret et al. 1999]. For including
hidden geometry in the representation, impostor tech-
niques with multiple colors and depth values per texel
position [Max 1996; Shade et al. 1998] were introduced.
Several impostor techniques have been proposed in pre-
vious work. However, the problem of generating an
impostor that is guaranteed to show no image artifacts
for a large view cell has not been solved in a satisfy-
ing way. In this paper, a layered impostor technique is
described which addresses these issues simultaneously.
It is based on partitioning the scene part into multiple
image layers with varying depth [Lacroute and Levoy
1994; Meyer and Neyret 1998; Regan and Pose 1994].
In 1998, Schaufler [Schaufler 1998] introduced layered
planar impostors. Objects are sliced into layers with in-
creasing distance from the reference viewpoint, and for
every layer a single planar impostor is generated by ren-
dering its content into a transparent texture. This texture
is assigned to a quadrilateral that is placed in the mid-
dle of the respective layer. Figure 1 shows an example
of a layered impostor. With this technique, parallax er-
rors are split to different layers so that the impostors are
valid for a larger view cell compared to using only a
single quadrilateral.
However, the original method suffers from image gaps
between the layers, who become visible as the observer
moves within the view cell. In this paper, we over-
come this drawback with an optimal layer placement
which bounds parallax errors in the impostor to a de-
fined value, and by use a new sampling algorithm for
recording the individual impostor layers. This is done
without relying on any knowledge about the geometric
structure of the original objects. As a result, all poten-
tially visible scene parts are sampled at the proper reso-

1

2 2 LAYERED IMPOSTORS WITHOUT IMAGE ARTIFACTS

Figure 1: Layered impostor technique [Schaufler 1998].

lution, which makes it possible to produce high-quality
representations without visible artifacts.

2 Layered Impostors Without Im-
age Artifacts

The layered impostor generation process requires as in-
put

• the scene part to be represented,

• the view cell (shape, size and position),

• the output image resolution and the field of view
used during impostor display.

Two different shapes of view cells are considered here.
Box-shaped view cells have widely been used in com-
puter graphics. Shaft-shaped view cells have been used
implicitly [Jakulin 2000; Aubel et al. 1999; Schaufler
and Stürzlinger 1996; Shade et al. 1996]. Figure 2
shows an example for a shaft in 2D. The shaft apex lies
in the center of the represented scene part. It is defined
by a direction, an apex angle and a minimum distance
to the object (see Figure 2). Shafts address the fact that

Minimum distance

Apex angle

Shaft

Figure 2: A shaft-shaped view cell.

errors introduced by the impostor are much less appar-
ent when increasing the view distance. Consequently,
the impostor can be displayed for a very large viewing
region, especially compared to box-shaped view cells.

Before the impostor generation starts, the camera for
recording the impostor is set to the reference viewpoint
within the view cell. The camera frustum is defined so
that it tightly encloses the scene part to be represented.
The technique presented here for preventing image arti-
facts is based on two ideas:

• Appropriate layer spacing: The distance between
two adjacent impostor layers is chosen so that they
do not move more than one texel against each other
when seen from within the view cell. We call
this property the one-texel layer spacing (see Sec-
tion 2.1).

• Complete scene recording: The rasterization
process used for impostor layer recording is mod-
ified so that no scene parts are missed (see Sec-
tion 2.2). In addition, for scene parts that are
present in two adjacent layers, the transition be-
tween the layers is drawn using identical texel po-
sitions.

In summary, because every texel exposes no more than
the texel behind it and all layer transitions are repre-
sented with identical texels, it is not possible to look
“through” a transition from within the view cell. For this
reason we can guarantee that no impostor shows any im-
age gaps, especially if it represents a continuous surface
in multiple layers.

2.1 Layer Placement Calculation

This section describes the calculation of the position and
the depth range of every impostor layer. Two issues
have to be taken into account in this connection. First,
the one-texel layer spacing must be fulfilled in order to
guarantee an artifact-free representation. Therefore, the
following subsection gives a scheme for calculating the
positions of the impostor layers so that this requirement
is always fulfilled. The second issue are parallax er-
rors introduced by the impostor which must be quanti-
fied and limited. This issue is important for calculating
the depth range of every layer, as will be presented fur-
ther below.

2.1.1 One-Texel Layer Spacing

The goal is to place the layers close enough so that for
every view within the view cell, each texel uncovers at
most the texel behind it in the following layer. With-
out loss of generality, for all further illustrations the ob-
ject is assumed to be centered in front of the view cell.
Furthermore, the reference viewpoint is positioned at a

2.1 Layer Placement Calculation 3

p

b

a

c

P
P'

(a) (b) (c)

Figure 3: Movements of one texel when seen from
within a rectangular (a) and shaft-shaped (b) view cell.
The lines indicate for every texel when the texel behind
it is completely uncovered when moving to the left. (c)
shows the setup for the derivation of texel movements
between two layers.

vertical line through the view-cell center as is shown in
Figure 3 (left and middle). This is the best horizontal
position because all errors introduced by the impostor
are equally distributed to the left and right side. The op-
timal vertical position will be discussed further below.
For this symmetric setup, all following considerations
can be reduced to one side of the view cell (we choose
the left side for explanation).

Figure 3 ((a) and (b)) shows for every texel in a layer a
line indicating where the texel in the following layer is
completely uncovered when moving to the left. This
means an image gap will occur behind a texel when
viewed from a position to the left of this line. The one-
texel layer spacing has to be calculated so that no such
line crosses the view cell.

First we will show that all these lines meet in a point at
the same height as the reference viewpoint, because this
reduces the consideration to only the outermost lines.
Assume a given reference viewpoint P and two impostor
layers with distances a and a + c as shown in Figure 3
(c). The size of a texel in the layer with distance a is
defined as p. For every texel, a triangle is formed by the
line that indicates when the texel behind it is completely
uncovered, and a line from P to the right border of that
texel. This triangle is shown in different colors for every
texel in Figure 3 (c). From similar triangles we get:

c
a+ c

=
p
b
.

Because p, c and a are constant, b is also constant, i.e.,
independent from the actual texel position in the layer.
Consequently, all lines meet the single point P′ as can
be observed in Figure 3 (c).

This in turn means that the line of the leftmost and the
rightmost texel define the right boundary of all lines (see
Figure 3). In order to avoid image gaps, it is sufficient
to ensure that these two lines do not cross the view cell.

br

bl

bh

bs

(b)

(a) (c)

(d)

�

cr

al

ah

as

cl

ch

cs

2

p

t

m

n

s

ar

c

t0

w

�
2

p

p p

p

Figure 4: Left: setup for the layer spacing calcula-
tion based on the maximum allowable texel movement.
Right: (a) for the right boundary line (identical for rec-
tangular and shaft shaped view cell), (b) and (c) for the
left boundary line for a rectangular view cell, (d) for the
left boundary line for a shaft shaped view cell.

For the following considerations we will call them left
boundary line and right boundary line, respectively.
The layer calculation assumes the following input para-
meters (see Figure 4 (left)):

• Either a rectangular view cell with width n and
depth m, or a shaft-shaped view cell with an apex
angle β . Furthermore, the distance s from the ref-
erence viewpoint to the view-cell border.

• The distance t0 between the object and the view
cell, and the width w of the object. The frus-
tum used for the impostor generation is assumed
to tightly fit the bounding box, as is depicted in
Figure 4 (left).

• The impostor texture resolution res, which is cho-
sen so that the impostor texture is not magnified
when seen from any viewpoint within the view cell.
The resolution can be calculated using the method
of Schaufler [Schaufler 1995]. The size of a texel
p at distance t (see Figure 4 (left)), is then defined
as:

p =
w(t + s)

res(t0 + s)
.

Given a layer distance t, the distance c from that layer to
the following one is calculated so that the boundary lines
just touch the view cell. c is calculated independently
for the left and right boundary line, and the smaller value

4 2 LAYERED IMPOSTORS WITHOUT IMAGE ARTIFACTS

is used. This is done for all cases by using similar trian-
gles:

c
a+ c

=
p
b
, (1)

Figure 4 ((a)-(d)) shows the respective configurations
for a and b for the left and right boundary line, which
are now discussed.
For the right boundary (see Figure 4, (a)) the definition
is

ar = t,

br =
n
2

+
sw

2(t0 + s)
.

Substituting a and b in Equation 1 results in the distance
cr:

cr =
t

res
2(t+s)

(
n(t0+s)

w + s
)
−1

. (2)

This equation holds for the right boundary of rectangu-
lar as well as of shaft-shaped view cells.
For the left boundary line, the layer computation is first
considered for a rectangular view cell. A distinction
must be made depending on whether the left boundary
of the impostor layer ends to the left or to the right of the
left boundary of the view cell. This indicates whether
the left boundary line touches the lower (see Figure 4
(b)) or upper (see Figure 4, (c)) view-cell corner.
The definition of a and b for the lower view-cell corner
(Figure 4, (b)) is

al = t +m,

bl =
n
2

+
(m− s)

(w
2 − w

res

)
t0 + s

.

Equation 1 results in the distance cl :

cl =
t +m

res
2(t+s)

(
n(t0+s)

w +(m− s)
(
1− 2

res

))−1
. (3)

The definition for the upper view-cell corner is analo-
gous (Figure 4, (c))

ah = t,

bh =
n
2
− s

(w
2 − w

res

)
t0 + s

,

with Equation 1 resulting in the following distance ch:

ch =
t

res
2(t+s)

(
n(t0+s)

w + s
(2

res −1
))−1

. (4)

For shaft-shaped view cells, in order to ensure that the
view cell is not intersected by the left boundary line, the
line must be parallel to the left border of the shaft (see
Figure 4, (d)). a and b are defined as follows for this
case:

as = t + s,

bs =
(t + s)w
2(t0 + s)

+(t + s) tan
(

β
2

)
.

Equation 1 results in cs:

cs =
t + s

res
(

1
2 + t0+s

w tan
(

β
2

))
−1

. (5)

Up to now, the layer placement calculation was pre-
sented for one dimension. The extension to the general
2D case is quite simple because all texel movements are
independently for the x and y direction. This means that
c must be calculated for both directions and the smaller
value is used in order to ensure that no gaps occur in any
direction.
An interesting question is the choice of an optimal ref-
erence viewpoint, i.e., the choice of s. The best choice
maximizes the inter-layer spacing for the left and right
boundary line, because the smaller value has to be used.
Figure 5 (a-c) shows an example how the position of the
reference viewpoint affects the inter-layer spacing. The

(a) (d)(c)(b)

Figure 5: Layer spacing for different reference view-
points: (a) too close to the object, (b) optimal placement,
(c) too far from the object. (d) If the impostor width is
smaller than the view-cell width, the optimal viewpoint
is always nearest to the object.

spacing cr for the right boundary line always decreases
with increasing s. This can be shown using the deriva-
tion c′r(s) of Equation 2 which is

c′r(s) =
2reswt(n(t0 − t)−wt)

(res(n(t0 + s)+ws)−2w(t + s))2 .

The denominator is always positive and the numerator
is always negative, because t > t0 holds. Consequently,
cr decreases monotonically with increasing s. There-
fore, the best value for s for the right boundary line is
0. Note that placing the reference viewpoint in front
of the view cell (i.e., s < 0) is not possible, because

2.1 Layer Placement Calculation 5

distant impostor layers would appear magnified in the
output image. Fortunately, if s = 0, Equation 4 always
results in exactly the same value for ch as Equation 2
does for cr. This means, as long as the left boundary of
every layer does not exceed the left boundary of a rec-
tangular view cell, the optimal viewpoint is s = 0 as is
shown in Figure 5 (d). This is also the best viewpoint
considering the sampling of the impostor texture: if the
viewer moves to the view-cell border nearest to the im-
postor (where s = 0), the texels in every impostor layer
are equally-sized on the screen, thus making best use of
texture memory. In contrast, if the reference viewpoint
is placed further apart from the object (i.e., s > 0), dis-
tant layers are never viewed at full resolution which is
a (minor) waste of memory. For all other cases (for the
lower rectangular view-cell corner and a shaft-shaped
view cell), no general optimum can be found. This is
because the optimal reference viewpoint is different for
each layer (as it depends on the layer distance t). How-
ever, changing the position of the reference viewpoint
for different layers is not compatible with the artifact-
free layer recording technique (see Section 2.2). How-
ever, in practice, a value for rectangular view cells of
s = m

2 and for shaft-shaped view cells of s = n
2 was found

to provide satisfying results.

2.1.2 Parallax Errors

The layering technique provides a reproduction of par-
allax movements within the represented scene parts.
However, because every texel represents a certain depth
range, parallax errors still occur within every layer. This
error is quantified with the parallax angle α , which is
the angle between the true 3D position of the point and
its projection to the impostor [Schaufler 1998]. The goal
is to limit α for the whole impostor, typically to the an-
gle of a pixel in the output image. In order to achieve
this for layered impostors, the depth range for every
layer has to be set up appropriately.

For the following considerations, we distinguish be-
tween two cases: first, we derive the depth ranges be-
tween two adjacent layers, i.e., where to place the border
between two impostor layers. Afterwards, we determine
the depth ranges of the outermost layers, i.e., in front of
the first (nearest) layer and behind the last (most distant)
layer.

Concerning the depth ranges between two layers, the
one-texel layer spacing (see Section 2.1.1) already guar-
antees that the parallax errors that occur between adja-
cent impostor layers are always smaller than α . This
is because the relative movement of a texel against the

texel at the same position in the previous and follow-
ing layer is limited to less than a texel. Given the fact
that every texel is always visible with an angle smaller
than α , no parallax error larger than a texel can occur.
A result of this consideration is that the choice where to
place the depth border (i.e. the clipping plane) between
two adjacent impostor layers is arbitrary.

However, to keep the introduced parallax errors as small
as possible, parallax movements should be distributed
equally between adjacent layers. This means that for
the viewpoint were the maximum parallax angle occurs,
it should be equally distributed to the closer and more
distant layer, for every “view direction” from that point.
Figure 6 (a) shows a configuration where the border is
placed so that this is not achieved: the parallax angle
that occurs for the closer layer is much larger than the
one for the distant layer. In contrast, Figure 6 (b) shows
a configuration where the border is placed so that this is
achieved, independently from the view direction. Note
that it is not desired to equally distribute the parallax
angle for a particular texel position.

d

s

tnb

tf

f

a

(c)(b)(a)

Figure 6: (a): different parallax angle in two adjacent
layers. (b): equal parallax angle in two layers, indepen-
dently from the view direction. (c): calculation scheme
for optimally placing the border.

We assume that the largest parallax angle occurs if the
viewer is located somewhere on the view cell border
closest to the impostor (as Figure 6 (c) shows), because
the impostor appears in maximum magnification for this
configuration. Given two impostor layers with distances
tn and t f to the view cell, the distance d from the near
layer to the border between the layers is calculated using
three pairs of similar triangles (see Figure 6 (c)):

t f

a
=

t f − tn −d
f

,

tn +d + s
f

=
tn + s

b
,

d
b

=
tn +d

a
.

6 2 LAYERED IMPOSTORS WITHOUT IMAGE ARTIFACTS

Solving the equation system for d (by eliminating a and
b, which automatically eliminates f) results in

d =
−t2

n − tns+
√

tf tn(t f + s)(tn + s)
tn + t f + s

. (6)

Note that d only depends on tn, t f and s. This means
that the parallax angle is equally distributed between the
layers for all view directions of any viewpoint on the
view cell border, as is shown in Figure 6 (b).

The final task is the derivation of the depth range in front
of the nearest and behind the farthest impostor layer. We
assume a plane at a given distance, which is either the
near border of the scene part to be represented for calcu-
lating the first impostor layer, or the last impostor layer
for calculating to which distance that layer can repre-
sent the scene. The goal is to choose the depth range
so that the parallax angle never exceeds α when seen
from the view cell. Therefore, the setup for which the
largest parallax angle occurs must be found. Figure 7

e

s

t

f

b

�
2

�

�

r

Figure 7: Left: points that are represented with an angle
of α with respect to a layer form a curve. Right: setup
for calculating the maximum allowable depth range.

(left) shows for every point on some plane a correspond-
ing point which is represented with an error angle of α
when seen from a new viewpoint. All such “α-points”
form a curve, as the figure shows. If the depth range is
set to the minimum distance of all α-points to the plane
(the red line in the figure), the parallax error will never
exceed α for the whole depth range.

We again assume that the maximum parallax angle oc-
curs for a viewpoint on the view cell border close to the
impostor as Figure 7 (right) shows. The depth range e is
described in dependence of an angle φ , which can be in-
terpreted as the view direction from the new viewpoint.
Given the plane at distance t to the view cell and a view-
point of r left to the reference viewpoint (see Figure 7

(right)), for an arbitrary φ we get the depth range e by
similar triangles:

e
f

=
e+ t + s

b
, where

f = t tan
(

φ +
α
2

)
− t tan

(
φ − α

2

)
,

b = r + s tan
(

φ − α
2

)
.

This results in

e =
2tsin(α)(t + s)

r(cos(2φ)+ cos(α))+ s(sin(2φ)− sin(α))−2t sin(α)
.(7)

The minimum value for e is obtained by differentiation
with respect to φ :

e′(φ) =
4t sin(α)(t + s)(r sin(2φ)− scos(2φ)

(r(cos(2φ)+ cos(α))+ s(sin(2φ)− sin(α))−2t sin(α))2 ,

and solving e′(φ) = 0. This results in

φmin =
1
2

arctan
(s

r

)
.

With the second derivative, it can be shown that this is
a minimum for e, as Figure 7 (left) shows. Note that
φmin only depends on the position of the new viewpoint
relative to the reference viewpoint, i.e., it is indepen-
dent from the distance between the impostor and the
view cell, and from the pixel angle α . In order to ob-
tain the minimum depth range emin, φmin is inserted in
Equation 7, resulting in

emin =
2t sin(α)(t + s)

r cos(α)− (2t + s)sin(α)+
√

r2 + s2
.

Note that emin is decreasing with increasing r. This
means that r has to be set to the maximum possible value
in order to guarantee a parallax angle smaller than α for
every viewpoint in view cell. This maximum value is
obtained in the corner of the view cell, which is intu-
itive because this is the largest distance to the reference
viewpoint.
An interesting characteristic is that starting from a cer-
tain distance, the parallax movements in the whole scene
part farther away than this distance are smaller than α ,
so that the whole scene part can be represented by a sin-
gle layer, regardless of its extent. This is the case if
f ≥ b (see Figure 7 (right)), because the two lines that
enclose f (starting in the reference viewpoint and in the
new viewpoint) do not meet each other.
All considerations up to this point work in a 2D plane. In
contrast to texel movements, parallax movements can-
not be treated independently for the x and y direction

2.2 A Rasterization Method for Guaranteed Layer Connectivity 7

for the general 3D case. However, the viewpoint where
the largest parallax effect occurs is still the view cell
corner near the impostor, but now in 3D space. The cal-
culations presented above can still be done in 2D, but
in a plane which is defined by the reference viewpoint
and the two diagonal view-cell corners near the impos-
tor. Consequently, the value for r must be changed to
mean the distance to a view cell corner in 3D space (see
Figure 8). Using this setup, the calculations remain as
described above.

r

s

Figure 8: Parametrization for the 3D case for calculating
the depth ranges concerning parallax angles.

2.2 A Rasterization Method for Guaran-
teed Layer Connectivity

Because every layer is recorded separately, scene parts
hidden from the reference viewpoint are included in the
representation (in contrast to Schaufler [Schaufler 1998]
who used only a single image). However, image cracks
still appear. The problem is basically caused by the
specification of polygon rasterization in current graph-
ics hardware: a pixel is only drawn during polygon ras-
terization if its center is covered by the polygon. One
effect of this definition is that surfaces viewed from an
acute angle may not be rendered at all if they fall be-
tween two adjacent pixel centers. In this case, infor-
mation is missing which can lead to large image gaps.
Furthermore, small gaps appear between adjacent layers
representing a single primitive (i.e., polygon) because
of the following fact: the intersection of the primitive
with the clipping plane separating the two layers forms
a clipping edge. The definition of rasterization entails
that each texel of the clipping edge is rasterized either
in one or in the other layer, as is shown in Figure 9, left.
This instantly leads to gaps between adjacent layers if
the viewpoint is moved.
The elimination of such image cracks is obtained in the
following way: texels are drawn even if they are cov-
ered only partly by a primitive, especially if the texel
center is not covered. This ensures that all scene parts

Figure 9: Left: the clipping edge of the polygon (drawn
in red) is not represented in both adjacent layers. Mid-
dle: after separately drawing the outline of the clipped
polygon (yellow texels), a common representation of the
clipping edge is generated in both layers. Right: holes at
each clipping edge step are filled manually to guarantee
an artifact free representation.

are acquired (regardless whether they cover a texel cen-
ter or not) and that all clipping edges are present in both
involved layers.
The way to ensure this is to manually clip each poly-
gon to the corresponding near and far layer border
(Sutherland-Hodgeman clipping can be used, for exam-
ple), and draw all polygon outlines explicitly, for ex-
ample using the OpenGL edge primitive (see Figure 9,
middle). The outlines have to be drawn in a predefined
direction (e.g., from left to right) to ensure that identi-
cal texels are rasterized for the clipping edges in every
layer. In order to ensure that all line endpoints are drawn
as well, the polygon vertices are rasterized separately as
points.
Although this removes most of the image cracks, spo-
radic ones might still appear if the viewer moves in diag-
onal direction within the view cell. This is caused by the
rasterization of the clipping lines (an “eight-connected”
line) as is shown in Figure 9 (right). Such cases can be
manually identified by considering each 2x2 texel block
in both layers: while the diagonal texels in one direction
are present in both layers (Figure 9 (right) shows the
upper-left to lower-right case), the texels in the orthog-
onal direction are only present either in one or in the
other layer. The gap can be closed by copying the texel
color from the closer layer to the more distant layer (thus
forming a “four-connected” line).
The result is that for every object, all borders between
adjacent layers are drawn using identical texel posi-
tions. In combination with the one-texel layer spacing
(see Section 2.1.1) the representation shows no cracks
or image gaps as can be observed in Figure 10 (right).
In order to achieve this property, Schaufler [Schaufler
1998] proposed to let the depth ranges of adjacent lay-
ers overlap. However, this gives no guarantee that im-
age gaps do not occur, as Figure 10 (middle) shows. For

8 2 LAYERED IMPOSTORS WITHOUT IMAGE ARTIFACTS

Figure 10: Left: original object seen from the refer-
ence viewpoint. Middle: impostor recorded using layers
widely overlapping in depth. Note that image cracks are
not avoided. Right: the same impostor generated using
the new method with all image cracks eliminated.

this example, even a very large depth overlap of half a
layer does not remedy the problem. Another approach
by Meyer and Neyret [Meyer and Neyret 1998] tries to
solve the problem in image space by estimating object
contours in every layer and filling the inside of each such
contour. However, because the algorithm does not ex-
ploit information about the original scene parts, it is un-
clear how well the result resembles the original scene.

2.3 Discussion on the Number of Layers

The number of impostor layers is important for the
efficiency of the layered impostor technique since it
strongly correlates to the required impostor memory as
well as the geometric complexity of an impostor. There-
fore, this section describes the basic factors that influ-
ence this value.
The number of required impostor layers depends on two
main factors:

• The parallax movements within the scene part,
which depend on the size of the view cell and
the distance between the view cell and the repre-
sented scene part. Because parallax movements
are “mimicked” by the impostor layers, the number
of required layers increases proportionally with the
amount of parallax movements.

• The size of an impostor texel, defined by the output
image resolution and field of view. Because each
layer is not allowed to move more than one texel
(see Section 2.1.1), the number of layers grows
with decreasing texel size.

In order to show the influence of parallax movements,
the number of layers is calculated for the model of a
dragon (about 20 m high and consisting of 108,500
polygons) for varying distances between the model and
a cubic view cell with a sidelength of 10m. Figure 11

shows some views from a point outside the view cell
in order to show the number of layers. Diagram 12

Figure 11: Example for layered impostors for different
object distances to the view cell. From left to right: 120,
60, 30, 15, 7, 1 layers generated for 42, 59, 96, 142, 209
and 563 m distance.

0

20

40

60

80

100

120

0 50 100 150 200 250

Distance

L
a
y
e
rs

1024 Pixels

512 Pixels

256 Pixels

0 5 10 15 20 25 30

View cell size

50m Distance

100m Distance

200m Distance

Figure 12: Number of layers required for the dragon
model in dependence of the distance between the view
cell and the model and for different output image res-
olutions (left), as well as for some fixed distances but
varying view-cell sizes (right).

(left) shows the number of layers, obtained in each test
for varying output resolutions (discussed further below).
It can be seen that the number of layers falls hyperbol-
ically with increasing distance between the model and
the view cell. This was expected since parallax move-
ments increase analogously. In a second test, the view-
cell size was varied for three fixed distances. It can be
observed that the number of layers grows roughly lin-
early with the view-cell size for all distances. A result
from these tests is that the distance between the scene
part and the view cell in combination with the view-cell
size has a major impact on the efficiency of the resulting
impostor: while for distant objects and/or small view-
cell sizes only few layers are needed to cover large scene
portions, near objects and/or large view-cell sizes result
in very high number of layers. The distance has a greater
impact than the view-cell size.

In the first test described above (Figure 12, left), the out-
put resolution was varied between 256 and 1024 pix-
els. It can be seen that the number of layers increases
roughly linearly with the number of pixels. This can
also be derived from the Equations 2 to 4.

REFERENCES 9

Note that all trends discussed here also hold for shaft-
shaped view cells because of their similar parallax and
texel movement characteristics.

3 Application: Layered Environ-
ment Map Impostors

The layered impostor technique can be used for render-
ing acceleration in several ways. Aside from the use for
rectangular or shaft-shaped view cells, layered impos-
tors can also be used in architectural models as portal
impostors. For Layered Environment Map Impostors,
the impostor layers are arranged in a concentric way
around a cubic view cell, forming “cubic” environment
maps. This means that the impostors are used to repre-
sent distant scene parts. Figure 13 shows an example for
the Vienna model, where impostors were placed in four
orthogonal directions parallel to the ground plane.

Figure 13: Layered environment map impostor.

4 Summary

In this paper, a new method for generating layered im-
postors without image artifacts was presented. This is
achieved by a special layer placement in combination
with a special layer recording method that ensures that
every scene part is present in each layer it covers. This
ensures that no holes become visible between the layers,
so that image artifacts never occur.

References

ALIAGA, D. G., AND LASTRA, A. 1999. Automatic
image placement to provide a guaranteed frame rate.
In SIGGRAPH 99 Conference Proceedings, Addison
Wesley, A. Rockwood, Ed., Annual Conference Se-
ries, ACM SIGGRAPH, 307–316.

AUBEL, A., BOULIC, R., AND THALMANN, D. 1999.
Lowering the cost of virtual human rendering with
structured animated impostors. In WSCG’99 Con-
ference Proceedings, Univ. of West Bohemia Press,
V. Skala, Ed.

DARSA, L., SILVA, B. C., AND VARSHNEY, A. 1997.
Navigating static environments using image-space
simplification and morphing. In 1997 Symposium on
Interactive 3D Graphics, ACM Press, M. Cohen and
D. Zeltzer, Eds., ACM SIGGRAPH, 25–34. ISBN
0-89791-884-3.

DECORET, X., SILLION, F., SCHAUFLER, G., AND
DORSEY, J. 1999. Multi-layered impostors for accel-
erated rendering. Computer Graphics Forum (Proc.
Eurographics ’99) 18, 3 (Sept.), 61–73. ISSN 1067-
7055.

JAKULIN, A. 2000. Interactive vegetation rendering
with slicing and blending. In Proceedings of Euro-
graphics 2000 (Short Presentations), A. de Sousa and
J. Torres, Eds., Eurographics.

LACROUTE, P., AND LEVOY, M. 1994. Fast vol-
ume rendering using a shear-warp factorization of the
viewing transformation. In SIGGRAPH 94 Confer-
ence Proceedings, 451–458.

MAX, N., AND OHSAKI, K. 1995. Rendering trees
from precomputed Z-buffer views. In Rendering
Techniques ’95, Springer, 45–54.

MAX, N. 1996. Hierarchical rendering of trees
from precomputed multi-layer Z-buffers. In Render-
ing Techniques ’96 (Proceedings of the Eurographics
Workshop on Rendering 96), Springer-Verlag Wien
New York, X. Pueyo and P. Schröder, Eds., Euro-
graphics, 165–174. ISBN 3-211-82883-4.

MEYER, A., AND NEYRET, F. 1998. Interactive vol-
umetric textures. In Rendering Techniques ’98 (Pro-
ceedings of the Eurographics Workshop on Rendering
98), Springer-Verlag Wien New York, G. Drettakis
and N. Max, Eds., Eurographics, 157–168.

REGAN, M., AND POSE, R. 1994. Priority rendering
with a virtual reality address recalculation pipeline.
In Proceedings of SIGGRAPH ’94 (Orlando, Florida,
July 24–29, 1994), ACM Press, A. Glassner, Ed.,
Computer Graphics Proceedings, Annual Conference
Series, ACM SIGGRAPH, 155–162. ISBN 0-89791-
667-0.

SCHAUFLER, G., AND STÜRZLINGER, W. 1996.
A three-dimensional image cache for virtual reality.

10 REFERENCES

Computer Graphics Forum (Proc. Eurographics ’96)
15, 3 (Sept.), 227–235. ISSN 0167-7055.

SCHAUFLER, G. 1995. Dynamically generated impos-
tors. In GI Workshop on Modeling, Virtual Worlds,,
D. W. Fellner, Ed., 129–135.

SCHAUFLER, G. 1998. Per-object image warping with
layered impostors. In Rendering Techniques ’98 (Pro-
ceedings of the Eurographics Workshop on Rendering
98), Springer-Verlag Wien New York, G. Drettakis
and N. Max, Eds., 145–156.

SHADE, J., LISCHINSKI, D., SALESIN, D., DEROSE,
T., AND SNYDER, J. 1996. Hierarchical image
caching for accelerated walkthroughs of complex en-
vironments. In SIGGRAPH 96 Conference Proceed-
ings, Addison Wesley, H. Rushmeier, Ed., Annual
Conference Series, ACM SIGGRAPH, 75–82. held
in New Orleans, Louisiana, 04-09 August 1996.

SHADE, J. W., GORTLER, S. J., HE, L., AND
SZELISKI, R. 1998. Layered depth images. In SIG-
GRAPH 98 Conference Proceedings, Addison Wes-
ley, M. Cohen, Ed., Annual Conference Series, ACM
SIGGRAPH, 231–242. ISBN 0-89791-999-8.

SILLION, F., DRETTAKIS, G., AND BODELET, B.
1997. Efficient impostor manipulation for real-time
visualization of urban scenery. Computer Graphics
Forum (Proc. Eurographics ’97) 16, 3 (Aug.), 207–
218. ISSN 1067-7055.

